Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.355
1.
PLoS One ; 19(5): e0300227, 2024.
Article En | MEDLINE | ID: mdl-38696419

Aging is associated with a wide range of physiological and behavioral changes in many species. Zebrafish, like humans, rodents, and birds, exhibits gradual senescence, and thus may be a useful model organism for identifying evolutionarily conserved mechanisms related to aging. Here, we compared behavior in the novel tank test of young (6-month-old) and middle aged (12-month-old) zebrafish from two strains (TL and TU) and both sexes. We find that this modest age difference results in a reduction in locomotor activity in male fish. We also found that background strain modulated the effects of age on predator avoidance behaviors related to anxiety: older female TL fish increased bottom dwelling whereas older male TU fish decreased thigmotaxis. Although there were no consistent effects of age on either short-term (within session) or long-term (next day) habituation to the novel tank, strain affected the habituation response. TL fish tended to increase their distance from the bottom of the tank whereas TU fish had no changes in bottom distance but instead tended to increase thigmotaxis. Our findings support the use of zebrafish for the study of how age affects locomotion and how genetics interacts with age and sex to alter exploratory and emotional behaviors in response to novelty.


Aging , Zebrafish , Animals , Zebrafish/physiology , Female , Male , Aging/physiology , Behavior, Animal/physiology , Locomotion/physiology , Motor Activity/physiology , Exploratory Behavior/physiology
2.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Article En | MEDLINE | ID: mdl-38656542

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Exploratory Behavior , Hippocampus , Neuronal Plasticity , Receptors, Vasoactive Intestinal Polypeptide, Type I , Vasoactive Intestinal Peptide , Animals , Male , Rats , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Exploratory Behavior/physiology , Hippocampus/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Rats, Wistar , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Vasoactive Intestinal Peptide/metabolism
3.
Behav Brain Res ; 466: 114977, 2024 May 28.
Article En | MEDLINE | ID: mdl-38570074

Apathy is a complex psychiatric syndrome characterised by motivational deficit, emotional blunting and cognitive changes. It occurs alongside a broad range of neurological disorders, but also occurs in otherwise healthy ageing. Despite its clinical prevalence, apathy does not yet have a designated treatment strategy. Generation of a translational animal model of apathy syndrome would facilitate the development of novel treatments. Given the multidimensional nature of apathy, a model cannot be achieved with a single behavioural test. Using a battery of behavioural tests we investigated whether aged rats exhibit behavioural deficits across different domains relevant to apathy. Using the effort for reward and progressive ratio tasks we found that aged male rats (21-27 months) show intact reward motivation. Using the novelty supressed feeding test and position-based object exploration we found aged rats showed increased anxiety-like behaviour inconsistent with emotional blunting. The sucrose preference test and reward learning assay showed intact reward sensitivity and reward-related cognition in aged rats. However, using a bowl-digging version of the probabilistic reversal learning task, we found a deficit in cognitive flexibility in aged rats that did not translate across to a touchscreen version of the task. While these data reveal important changes in cognitive flexibility and anxiety associated with ageing, aged rats do not show deficits across other behavioural domains relevant to apathy. This suggests that aged rats are not a suitable model for age-related apathy syndrome. These findings contrast with previous work in mice, revealing important species differences in behaviours relevant to apathy syndrome in ageing.


Aging , Anxiety , Apathy , Disease Models, Animal , Motivation , Reward , Animals , Male , Apathy/physiology , Aging/physiology , Motivation/physiology , Anxiety/physiopathology , Rats , Behavior, Animal/physiology , Reversal Learning/physiology , Exploratory Behavior/physiology
4.
PLoS Comput Biol ; 20(4): e1011516, 2024 Apr.
Article En | MEDLINE | ID: mdl-38626219

When facing an unfamiliar environment, animals need to explore to gain new knowledge about which actions provide reward, but also put the newly acquired knowledge to use as quickly as possible. Optimal reinforcement learning strategies should therefore assess the uncertainties of these action-reward associations and utilise them to inform decision making. We propose a novel model whereby direct and indirect striatal pathways act together to estimate both the mean and variance of reward distributions, and mesolimbic dopaminergic neurons provide transient novelty signals, facilitating effective uncertainty-driven exploration. We utilised electrophysiological recording data to verify our model of the basal ganglia, and we fitted exploration strategies derived from the neural model to data from behavioural experiments. We also compared the performance of directed exploration strategies inspired by our basal ganglia model with other exploration algorithms including classic variants of upper confidence bound (UCB) strategy in simulation. The exploration strategies inspired by the basal ganglia model can achieve overall superior performance in simulation, and we found qualitatively similar results in fitting model to behavioural data compared with the fitting of more idealised normative models with less implementation level detail. Overall, our results suggest that transient dopamine levels in the basal ganglia that encode novelty could contribute to an uncertainty representation which efficiently drives exploration in reinforcement learning.


Basal Ganglia , Dopamine , Models, Neurological , Reward , Dopamine/metabolism , Dopamine/physiology , Uncertainty , Animals , Basal Ganglia/physiology , Exploratory Behavior/physiology , Reinforcement, Psychology , Dopaminergic Neurons/physiology , Computational Biology , Computer Simulation , Male , Algorithms , Decision Making/physiology , Behavior, Animal/physiology , Rats
5.
Behav Processes ; 217: 105031, 2024 Apr.
Article En | MEDLINE | ID: mdl-38642718

In this study, we compared the exploratory behaviour of mound-building mice (Mus spicilegus) and house mice (Mus musculus) with domesticated laboratory mouse strains (BALB/c and C57BL/6). The animals spent 15 minutes in the furnished test box before the exit to the outside world became free. During the 5-minute test, it was noted whether the animal left the familiar environment; if it did, it was recorded in how many seconds. Based on our results, the wild mouse species were more likely to leave the familiar mouse box and explore the outside environment earlier than the laboratory mice. We also found a difference within the wild mouse species, the mound-building mouse being the one that explored the external environment to a greater extent and faster. The effect of domestication manifests in the fact that laboratory mouse strains are less likely to leave their familiar environment and are significantly less active than their wild ancestors.


Animals, Wild , Behavior, Animal , Exploratory Behavior , Mice, Inbred C57BL , Animals , Mice , Exploratory Behavior/physiology , Behavior, Animal/physiology , Species Specificity , Mice, Inbred BALB C , Male , Animals, Laboratory/physiology
6.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38607918

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


CA1 Region, Hippocampal , Interneurons , Recognition, Psychology , Vasoactive Intestinal Peptide , Animals , Interneurons/metabolism , Interneurons/physiology , Vasoactive Intestinal Peptide/metabolism , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/cytology , Mice , Male , Recognition, Psychology/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Mice, Inbred C57BL , Memory/physiology , Parvalbumins/metabolism , Exploratory Behavior/physiology , Somatostatin/metabolism
7.
Physiol Behav ; 280: 114550, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614416

Neuroinflammation in the early postnatal period can disturb trajectories of the completion of normal brain development and can lead to mental illnesses, such as depression, anxiety disorders, and personality disorders later in life. In our study, we focused on evaluating short- and long-term effects of neonatal inflammation induced by lipopolysaccharide, poly(I:C), or their combination in female and male C57BL/6 and BTBR mice. We chose the BTBR strain as potentially more susceptible to neonatal inflammation because these mice have behavioral, neuroanatomical, and physiological features of autism spectrum disorders, an abnormal immune response, and several structural aberrations in the brain. Our results indicated that BTBR mice are more sensitive to the influence of the neonatal immune activation (NIA) on the formation of neonatal reflexes than C57BL/6 mice are. In these experiments, the injection of lipopolysaccharide had an effect on the formation of the cliff aversion reflex in female BTBR mice. Nonetheless, NIA had no delayed effects on either social behavior or anxiety-like behavior in juvenile and adolescent BTBR and C57BL/6 mice. Altogether, our data show that NIA has mimetic-, age-, and strain-dependent effects on the development of neonatal reflexes and on exploratory activity in BTBR and C57BL/6 mice.


Animals, Newborn , Inflammation , Lipopolysaccharides , Mice, Inbred C57BL , Poly I-C , Animals , Female , Lipopolysaccharides/pharmacology , Male , Mice , Inflammation/chemically induced , Poly I-C/pharmacology , Anxiety/chemically induced , Social Behavior , Disease Models, Animal , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Reflex/physiology , Reflex/drug effects
8.
Cell Rep ; 43(4): 113958, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38520691

The brain can generate actions, such as reaching to a target, using different movement strategies. We investigate how such strategies are learned in a task where perched head-fixed mice learn to reach to an invisible target area from a set start position using a joystick. This can be achieved by learning to move in a specific direction or to a specific endpoint location. As mice learn to reach the target, they refine their variable joystick trajectories into controlled reaches, which depend on the sensorimotor cortex. We show that individual mice learned strategies biased to either direction- or endpoint-based movements. This endpoint/direction bias correlates with spatial directional variability with which the workspace was explored during training. Model-free reinforcement learning agents can generate both strategies with similar correlation between variability during training and learning bias. These results provide evidence that reinforcement of individual exploratory behavior during training biases the reaching strategies that mice learn.


Forelimb , Animals , Forelimb/physiology , Mice , Exploratory Behavior/physiology , Mice, Inbred C57BL , Learning/physiology , Male , Movement , Reinforcement, Psychology , Female , Behavior, Animal
9.
J Cogn Neurosci ; 36(6): 1156-1171, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38437186

Should we keep doing what we know works for us, or should we risk trying something new as it could work even better? The exploration-exploitation dilemma is ubiquitous in daily life decision-making, and balancing between the two is crucial for adaptive behavior. Yet, we only have started to unravel the neurocognitive mechanisms that help us to find this balance in practice. Analyzing BOLD signals of healthy young adults during virtual foraging, we could show that a behavioral tendency for prolonged exploitation was associated with weakened signaling during exploration in central node points of the frontoparietal attention network, plus the frontopolar cortex. These results provide an important link between behavioral heuristics that we use to balance between exploitation and exploration and the brain function that supports shifts from one tendency to the other. Importantly, they stress that interindividual differences in behavioral strategies are reflected in differences in brain activity during exploration and should thus be more in the focus of basic research that aims at delineating general laws governing visual attention.


Magnetic Resonance Imaging , Humans , Male , Female , Young Adult , Adult , Attention/physiology , Exploratory Behavior/physiology , Brain Mapping , Frontal Lobe/physiology , Oxygen/blood , Decision Making/physiology
10.
Physiol Behav ; 280: 114529, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38555006

Early-life stress and subsequent high-calorie diets during adolescence are known to be risk factors for developing metabolic and psychological disorders. Although non-nutritive sweeteners such as stevia and sucralose have been a useful alternative to reduce sugar consumption, the effects of prolonged consumption of these sweeteners on metabolism and behavior in adolescents remain unclear. Here, we evaluated the effects of early-stress followed by access to stevia or sucralose during adolescence on weight gain, glycemia, and anxiety-related behaviors in male and female rats. During postnatal days (PNDs) 1-21, pups were separated twice a day, for 180 min each time, from their dam nest while non-separated pups served as controls. The pups were weaned, separated by sex and randomly distributed into the stevia, sucralose and water conditions. During PNDs 26-50, two bottles containing water and stevia or sucralose were placed in the animal home-cages, and body weight and blood glucose measures were scored. On PNDs 50 and 51, behavioral measures were obtained in the open-field test. Results showed that male rats consuming stevia reduced body weight gain, blood glucose and increased locomotion. Early-stress led to low blood glucose and alterations in anxiety and locomotion-related behaviors in a sex-dependent manner. Moreover, sucralose access during adolescence reversed the effects of early-stress on anxiety-related behaviors in female rats. The results suggest that the consumption of stevia and sucralose could be an alternative for the replacement of sugar-sweetened beverages, especially in adolescents who have had adverse early-life experiences.


Anxiety , Blood Glucose , Stevia , Stress, Psychological , Sucrose , Sucrose/analogs & derivatives , Sweetening Agents , Weight Gain , Animals , Female , Male , Sucrose/pharmacology , Weight Gain/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Sweetening Agents/pharmacology , Rats , Animals, Newborn , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Sex Characteristics , Rats, Wistar
11.
Trends Cogn Sci ; 28(5): 441-453, 2024 May.
Article En | MEDLINE | ID: mdl-38413257

What drives our curiosity remains an elusive and hotly debated issue, with multiple hypotheses proposed but a cohesive account yet to be established. This review discusses traditional and emergent theories that frame curiosity as a desire to know and a drive to learn, respectively. We adopt a model-based approach that maps the temporal dynamics of various factors underlying curiosity-based exploration, such as uncertainty, information gain, and learning progress. In so doing, we identify the limitations of past theories and posit an integrated account that harnesses their strengths in describing curiosity as a tool for optimal environmental exploration. In our unified account, curiosity serves as a 'common currency' for exploration, which must be balanced with other drives such as safety and hunger to achieve efficient action.


Exploratory Behavior , Humans , Exploratory Behavior/physiology , Learning/physiology , Animals , Models, Psychological
12.
Biol Rev Camb Philos Soc ; 99(3): 979-998, 2024 Jun.
Article En | MEDLINE | ID: mdl-38287201

Curiosity is a core driver for life-long learning, problem-solving and decision-making. In a broad sense, curiosity is defined as the intrinsically motivated acquisition of novel information. Despite a decades-long history of curiosity research and the earliest human theories arising from studies of laboratory rodents, curiosity has mainly been considered in two camps: 'linguistic human' and 'other'. This is despite psychology being heritable, and there are many continuities in cognitive capacities across the animal kingdom. Boundary-pushing cross-disciplinary debates on curiosity are lacking, and the relative exclusion of pre-linguistic infants and non-human animals has led to a scientific impasse which more broadly impedes the development of artificially intelligent systems modelled on curiosity in natural agents. In this review, we synthesize literature across multiple disciplines that have studied curiosity in non-verbal systems. By highlighting how similar findings have been produced across the separate disciplines of animal behaviour, developmental psychology, neuroscience, and computational cognition, we discuss how this can be used to advance our understanding of curiosity. We propose, for the first time, how features of curiosity could be quantified and therefore studied more operationally across systems: across different species, developmental stages, and natural or artificial agents.


Artificial Intelligence , Exploratory Behavior , Animals , Humans , Exploratory Behavior/physiology , Infant , Behavior, Animal/physiology
13.
Nat Rev Neurosci ; 25(3): 195-208, 2024 Mar.
Article En | MEDLINE | ID: mdl-38263217

For many years, neuroscientists have investigated the behavioural, computational and neurobiological mechanisms that support value-based decisions, revealing how humans and animals make choices to obtain rewards. However, many decisions are influenced by factors other than the value of physical rewards or second-order reinforcers (such as money). For instance, animals (including humans) frequently explore novel objects that have no intrinsic value solely because they are novel and they exhibit the desire to gain information to reduce their uncertainties about the future, even if this information cannot lead to reward or assist them in accomplishing upcoming tasks. In this Review, I discuss how circuits in the primate brain responsible for detecting, predicting and assessing novelty and uncertainty regulate behaviour and give rise to these behavioural components of curiosity. I also briefly discuss how curiosity-related behaviours arise during postnatal development and point out some important reasons for the persistence of curiosity across generations.


Exploratory Behavior , Information Seeking Behavior , Animals , Humans , Exploratory Behavior/physiology , Brain , Uncertainty , Reward , Primates
14.
Nat Neurosci ; 27(3): 536-546, 2024 Mar.
Article En | MEDLINE | ID: mdl-38272968

During goal-directed navigation, 'what' information, describing the experiences occurring in periods surrounding a reward, can be combined with spatial 'where' information to guide behavior and form episodic memories. This integrative process likely occurs in the hippocampus, which receives spatial information from the medial entorhinal cortex; however, the source of the 'what' information is largely unknown. Here, we show that mouse lateral entorhinal cortex (LEC) represents key experiential epochs during reward-based navigation tasks. We discover separate populations of neurons that signal goal approach and goal departure and a third population signaling reward consumption. When reward location is moved, these populations immediately shift their respective representations of each experiential epoch relative to reward, while optogenetic inhibition of LEC disrupts learning the new reward location. Therefore, the LEC contains a stable code of experiential epochs surrounding and including reward consumption, providing reward-centric information to contextualize the spatial information carried by the medial entorhinal cortex.


Entorhinal Cortex , Hippocampus , Mice , Animals , Entorhinal Cortex/physiology , Hippocampus/physiology , Exploratory Behavior/physiology , Spatial Behavior/physiology , Reward
15.
Trends Neurosci ; 46(12): 1054-1066, 2023 12.
Article En | MEDLINE | ID: mdl-37925342

Curiosity refers to the intrinsic desire of humans and animals to explore the unknown, even when there is no apparent reason to do so. Thus far, no single, widely accepted definition or framework for curiosity has emerged, but there is growing consensus that curious behavior is not goal-directed but related to seeking or reacting to information. In this review, we take a phenomenological approach and group behavioral and neurophysiological studies which meet these criteria into three categories according to the type of information seeking observed. We then review recent computational models of curiosity from the field of machine learning and discuss how they enable integrating different types of information seeking into one theoretical framework. Combinations of behavioral and neurophysiological studies along with computational modeling will be instrumental in demystifying the notion of curiosity.


Exploratory Behavior , Neurosciences , Humans , Animals , Exploratory Behavior/physiology , Motivation , Computer Simulation
16.
Behav Processes ; 210: 104912, 2023 Aug.
Article En | MEDLINE | ID: mdl-37406867

Anxiety is a protective behavior when animals face aversive conditions. The open field test (OFT) is used to assess the spatio-temporal dynamics of exploration, in which both homebase formation and recognition of environmental cues may reflect habituation to unfamiliar conditions. Because emotional- and affective-like states influence exploration patterns and mnemonic aspects, we aimed to verify whether the exploratory behaviors of two zebrafish populations showing distinct baselines of anxiety differ in two OFT sessions. Firstly, we assessed the baseline anxiety-like responses of short fin (SF) and leopard (LEO) populations using the novel tank test (NTT) and light-dark test (LDT) in 6-min trials. Fish were later tested in two consecutive days in the OFT, where the spatial occupancy and exploratory profile were analyzed for 30 min. In general, LEO showed pronounced diving behavior and scototaxis in the NTT and LDT, respectively, in which an "anxiety index" corroborated their exacerbated anxiety-like behavior. In the OFT, the SF population spent less time to establish the homebase in the 1st trial, while only LEO showed a markedly reduction in the latency to homebase formation in the 2nd trial. Both locomotion and homebase-related activities were decreased in the 2nd trial, in which animals also revealed increased occupancy in the center area of the apparatus. Moreover, we verified a significant percentage of homebase conservation for both populations, while only SF showed reduced the number of trips and increased the average length of trips. Principal component analyses revealed that distinct factors accounted for total variances between trials for each population tested. While homebase exploration was reduced in the 2nd trial for SF, an increased occupancy in the center area and hypolocomotion were the main factors that contribute to the effects observed in LEO during re-exposure to the OFT. In conclusion, our novel data support the homebase conservation in zebrafish subjected to independent OFT sessions, as well as corroborate a population-dependent effect on specific behavioral parameters related to exploration.


Behavior, Animal , Zebrafish , Animals , Zebrafish/physiology , Behavior, Animal/physiology , Anxiety , Locomotion , Exploratory Behavior/physiology , Phenotype
17.
Behav Processes ; 209: 104885, 2023 Jun.
Article En | MEDLINE | ID: mdl-37150335

Behavioral responses vary between individuals and may be repeated in different contexts over time. When a behavioral response set is linked and present regardless of the context, it characterizes a behavioral syndrome. By evaluating how bold and shy (profiles related to risk-taking) individuals perform about exploration and anxiety, we can predict relationships of behavioral syndromes and better understand how different axis of personality is formed. Here we classified the profiles by risk-taking and evaluated their exploration behavior in the open field test. In this context, the two groups showed significant differences in thigmotaxis behavior: bold individuals habituate faster and show decreased thigmotaxis (less anxiety), while shy ones are less prone to leave the security of the side areas of the open tank and present higher anxiety. We emphasized the importance of further investigating the behavior of these profiles in other contexts and the importance of each one for the evolution and fitness of the species, in addition to a better understanding of which behaviors are involved in the behavioral syndromes in zebrafish.


Behavior, Animal , Zebrafish , Animals , Behavior, Animal/physiology , Zebrafish/physiology , Exploratory Behavior/physiology , Syndrome , Personality
18.
Cogn Sci ; 47(4): e13253, 2023 04.
Article En | MEDLINE | ID: mdl-37012694

Curiosity motivates the search for missing information, driving learning, scientific discovery, and innovation. Yet, identifying that there is a gap in one's knowledge is itself a critical step, and may demand that one formulate a question to precisely express what is missing. Our work captures the integral role of self-generated questions during the acquisition of new information, which we refer to as active-curiosity-driven learning. We tested active-curiosity-driven learning using our "Curiosity Question & Answer Task" paradigm, where participants (N=135) were asked to generate questions in response to novel, incomplete factual statements and provided the opportunity to forage for answers. We also introduce new measures of question quality that express how well questions capture stimulus and foraging information. We hypothesized that active question asking should influence behavior across the stages of our task by increasing the probability that participants express curiosity, forage for answers, and remember what they had thereby discovered. We found that individuals who asked a high number of quality questions experienced elevated curiosity, were more likely to pursue missing information that was semantically related to their questions, and more likely to retain the information on a later cued recall test. Additional analyses revealed that curiosity played a predominant role in motivating participants to forage for missing information, and that both curiosity and satisfaction with the acquired information boosted memory recall. Overall, our results suggest that asking questions enhances the value of missing information, with important implications for learning and discovery of all forms.


Exploratory Behavior , Learning , Humans , Exploratory Behavior/physiology , Learning/physiology , Memory , Mental Recall/physiology , Cues
19.
Curr Biol ; 33(10): 1951-1966.e6, 2023 05 22.
Article En | MEDLINE | ID: mdl-37105167

The breathing rhythm serves as a reference that paces orofacial motor actions and orchestrates active sensing. Past work has reported that pacing occurs solely at a fixed phase relative to sniffing. We re-evaluated this constraint as a function of exploratory behavior. Allocentric and egocentric rotations of the head and the electromyogenic activity of the motoneurons for head and orofacial movements were recorded in free-ranging rats as they searched for food. We found that a change in state from foraging to rearing is accompanied by a large phase shift in muscular activation relative to sniffing, and a concurrent change in the frequency of sniffing, so that pacing now occurs at one of the two phases. Further, head turning is biased such that an animal gathers a novel sample of its environment upon inhalation. In total, the coordination of active sensing has a previously unrealized computational complexity. This can emerge from hindbrain circuits with fixed architecture and credible synaptic time delays.


Movement , Vibrissae , Rats , Animals , Vibrissae/physiology , Movement/physiology , Exploratory Behavior/physiology , Rhombencephalon , Motor Neurons , Head Movements/physiology
20.
Curr Biol ; 33(7): 1358-1364.e4, 2023 04 10.
Article En | MEDLINE | ID: mdl-36889318

Behavior is shaped by both the internal state of an animal and its individual behavioral biases. Rhythmic variation in gonadal hormones during the estrous cycle is a defining feature of the female internal state, one that regulates many aspects of sociosexual behavior. However, it remains unclear whether estrous state influences spontaneous behavior and, if so, how these effects might relate to individual behavioral variation. Here, we address this question by longitudinally characterizing the open-field behavior of female mice across different phases of the estrous cycle, using unsupervised machine learning to decompose spontaneous behavior into its constituent elements.1,2,3,4 We find that each female mouse exhibits a characteristic pattern of exploration that uniquely identifies it as an individual across many experimental sessions; by contrast, estrous state only negligibly impacts behavior, despite its known effects on neural circuits that regulate action selection and movement. Like female mice, male mice exhibit individual-specific patterns of behavior in the open field; however, the exploratory behavior of males is significantly more variable than that expressed by females both within and across individuals. These findings suggest underlying functional stability to the circuits that support exploration in female mice, reveal a surprising degree of specificity in individual behavior, and provide empirical support for the inclusion of both sexes in experiments querying spontaneous behaviors.


Estrous Cycle , Exploratory Behavior , Mice , Male , Female , Animals , Estrous Cycle/physiology , Exploratory Behavior/physiology , Movement
...